
Foundations of Artificial Neural Networks: Linear Discriminants, Neuron and Perceptron

Brain – the best learning system
• Artificial Neural Networks were inspired by the functionality of the

human brain

• The brain consists of neurons and synapses

• And their sheer number makes it the best learning system

• Artificial Neural Networks try to simulate it algorithmically with
the help of numbers

Basics of machine learning
• machine learning algorithms learn from data

• data is usually spilt into training and test data

Guessing the price

House prizes in square meters and euro
square meter prize

20 40 000
40 80 000
50 ?
60 120 000
80 160 000

Can you find the prize for a house of 50 square meters?

Geometric solution

x

y

0 20 40 60 80

40,000

80,000

120,000

160,000

From calculation point of view
y(x) = xw
y(20) = 20 ∗ 2, 000
y(20) = 40, 000
This means you can pay for a square meter 2,000 euro
So, learning is about finding the w in y(x) = xw which is a linear
function. If you have a house which is 50 square meters then the prize
should be around y(50) = 50 ∗ 2, 000 = 100, 000 euros. In real usage,
also a bias value is added to the calculation

y(x) = wx + b. (1)

if we call the prediction h instead of y(x)

xi h
w

An algorithm for training has

1. a set of inputs, in our case x = [20, 40, 60, 80]

2. a weight w

3. a set of targets or labels t = [40, 80, 120, 160]. Note that we
omitted the last three zeros for readability reasons.

4. a learning rate which is usually set to a small random number
η = 0.00002

5. A maximum number of iterations to update the weight. This
number of iterations is often called epochs

The algorithm does for training

1. initialize w with a random number

2. compute a prediction with w · xi The outcome will be put into hi
variable

3. compute the error the prediction made and see how different the
output is from the desired target or label ∆w = η · (ti − hi) · xi

4. update the weight with w ← w + ∆w

Python implementation of training with house prizes
inputs = [20, 40, 60, 80]

targets = [40, 80, 120, 160]

weight = 0.5

eta = 0.00002

epoch = 26

print "---------------------"

print inputs

print targets

for e in range(epoch):

print "---->>>>>> eopch " + str(e)

for i in range(4):

h = weight * inputs[i]

print "the h prediction is: " + str(h)

print "but the target is: " + str(targets[i])

diff = targets[i] - h

print "the difference: " + str(diff)

weight += eta * diff * inputs[i]

print "new weight: " + str(weight)

Python implementation of training with house prizes
epoch 0

the h prediction is: 10.0

but the target is: 40

the difference: 30.0

new weight: 0.512

the h prediction is: 20.48

but the target is: 80

the difference: 59.52

new weight: 0.559616

the h prediction is: 33.57696

but the target is: 120

the difference: 86.42304

new weight: 0.663323648

the h prediction is: 53.06589184

but the target is: 160

the difference: 106.93410816

new weight: 0.834418221056

Python implementation of training with house prizes
epoch 24

the h prediction is: 39.9295376652

but the target is: 40

the difference: 0.0704623347734

new weight: 1.9965050682

the h prediction is: 79.8602027278

but the target is: 80

the difference: 0.13979727219

new weight: 1.99661690601

the h prediction is: 119.797014361

but the target is: 120

the difference: 0.202985639221

new weight: 1.99686048878

the h prediction is: 159.748839102

but the target is: 160

the difference: 0.251160897596

new weight: 1.99726234622

Python implementation of training with house prizes
epoch 25

the h prediction is: 39.9452469243

but the target is: 40

the difference: 0.0547530756758

new weight: 1.99728424745

the h prediction is: 79.8913698979

but the target is: 80

the difference: 0.108630102141

new weight: 1.99737115153

the h prediction is: 119.842269092

but the target is: 120

the difference: 0.157730908309

new weight: 1.99756042862

the h prediction is: 159.804834289

but the target is: 160

the difference: 0.195165710547

new weight: 1.99787269376

Vectorization of the process
• to get rid of for loop

• to speed up the running time

• you can use python library numpy or Java library NDArray or
many other libraries in other programming languages

• scalar are denoted with lower case italic letters, vectors with lower
case bold italic letters and the matrices with upper case bold italic
letters

• so, our equation for prediction changes to h = w · x
• so, our equation to train changes to ∆w = η · (t − h) · x
• have a look into linear algebra for more details

Vectorization in our case means

• to predict h you use w ·


20
40
60
80


• when w = 1.5 then h = 1.5 ·


20
40
60
80

 =


30
60
90

120


• t − h means


40
80

120
160

−


30
60
90

120

 =


10
20
30
40


• 0.00002 ·


10
20
30
40

 ·


20
40
60
80

 =


0.0002
0.0004
0.0006
0.0008

 ·


20
40
60
80

 =

0.004 + 0.016 + 0.036 + 0.064 = 0.12

• updating the weight 1.5 + 0.12 = 1.62

python implementation of training with house prizes with
vectors

inputs = [20, 40, 60, 80]

targets = [40, 80, 120, 160]

weight = 0.5

eta = 0.00002

epoch = 26

print "---------------------"

print inputs

print targets

for e in range(epoch):

print "---->>>>>> eopch " + str(e)

h = dot(weight, inputs)

print "the h prediction is: " + str(h)

print "but the target is: " + str(targets)

diff = targets - h

print "the difference: " + str(diff)

weight += eta * dot(diff, inputs)

print "new weight: " + str(weight)

Brain – Let us look at a neuron

x1

x2

xm

Σ fθ O

w
1

w2

wm

h

..
.

A neuron has
1. a set of inputs xi
2. a set of weighted synapses wi

3. an adder

4. an activation function

h =
m∑
i=1

wixi (2)

o = g(h) =

{
1 if h > θ

0 if h ≤ θ
(3)

So, if we have 3 inputs [1,0,1]and 3 weights, then

A very basic python implementation
inputs = [1, 0, 1]

weights = [0.5, 0.7, 0.4]

Iterate over inputs and weights to calculate h

h = 0

for input in inputs:

for weight in weights:

h += input*weight

This is a very basic test for activation

if (h > 0.5):

print "activated!"

if (h <= 0.5):

print "not activated!"

A Perceptron can be trained and has

5. targets t(or so called labels)

6. an error function computes the difference between the target and
the real output: tk − yk . In order to be able to fire even with a
negative value we multiply this with xi

∆wij = η(tj − yj) · xi (4)

7. a learning rate called η to determine how fast to change the
weights

wij ← wij + ∆wij (5)

8. and a maximum number of iterations in order to train T

What is the input for the neuron d?

c

b

a

d

w
1

w2

w 3

input neurons connections
a w1
b w2
c w3

If we change it to
numbers:

input neurons connections
1 0.5
0 0.7
1 0.4

Vector solution
Here we multiply two vectors to predict:

h = w · x (6)

In the real world scenario:

(
w1,w2,w3

)
·

a
b
c

 = w1a + w2b + w3c. (7)

(
0.5, 0.7, 0.4

)
·

1
0
1

 = 1·0.5+0·0.7+1·0.4 = 0.5+0+0.4 = 0.9. (8)

